WHAT IS AN INCLINOMETER?

Inclinometers measure angular tilt in reference to gravity. TURCK inclinometers contain a MEMS (Micro-Electro-Mechanical System) device that incorporates a microelectromechanical capacitive element into the sensor that utilizes two parallel plate electrodes, one stationary and one attached to a spring-mass system. The suspended electrode is free to move with the change in angle relative to earth's gravity. This results in a measurable change in the capacitance between the two plates that is proportional to the angle of deflection. These signals are conditioned to provide voltage outputs (0.1 to 4.9 VDC) or current outputs (4 to 20 mA).

The microprocessor design and the MEMS technology allows for a compact, precise inclinometer in a very robust, industrialized package. The inclinometer carries an IP68 rating for ingress protection, and can operate in temperatures from -30°C to +70°C (-22°F to +158°F), with the option for -40°C (-40°F). These sensors can be mounted up to a maximum of ±85° angle for dual axis models and 360° for single axis models.

WHERE CAN I USE AN INCLINOMETER?

Inclinometer sensors may be used in a wide variety of applications to solve unique feedback requirements where the customer needs to level platforms or control tilt angle. The device's small size lends itself to a multitude of applications, such as:

- Commercial machines: diggers, cranes, rotary tables, bulldozers, road construction machinery
- Dancer arm position for web tension control
- Solar plants: mirror and cell positioning
- Machine control: levers, pedals, flaps, mixing machines, hydraulic jacks
- Vertical and horizontal drills used in tunnel and road construction and immersion equipment
- Offshore plants: platforms, cranes
- HVAC louvers, flood control gates, telescopes
- Conveyors, utility vehicles, agricultural and forestry machinery, cranes and hoisting technology – and more
WHAT IS AN INCLINOMETER?

Inclinometers measure angular tilt in reference to gravity. TURCK inclinometers contain a MEMS (Micro-Electro-Mechanical System) device that incorporates a microelectromechanical capacitive element into the sensor that utilizes two parallel plate electrodes, one stationary and one attached to a spring-mass system. The suspended electrode is free to move with the change in angle relative to earth’s gravity. This results in a measurable change in the capacitance between the two plates that is proportional to the angle of deflection. These signals are conditioned to provide voltage outputs (0.1 to 4.9 VDC) or current outputs (4 to 20 mA).

The microprocessor design and the MEMS technology allows for a compact, precise inclinometer in a very robust, industrialized package. The inclinometer carries an IP68 rating for ingress protection, and can operate in temperatures from -30°C to +70°C (-22°F to +158°F), with the option for -40°C (-40°F). These sensors can be mounted up to a maximum of ±85° angle for dual axis models and 360° for single axis models.

WHERE CAN I USE AN INCLINOMETER?

Inclinometer sensors may be used in a wide variety of applications to solve unique feedback requirements where the customer needs to level platforms or control tilt angle.

The device’s small size lends itself to a multitude of applications, such as:

- Commercial machines: diggers, cranes, rotary tables, bulldozers, road construction machinery
- Dancer arm position for web tension control
- Solar plants: mirror and cell positioning
- Machine control: levers, pedals, flaps, mixing machines, hydraulic jacks
- Vertical and horizontal drills used in tunnel and road construction and immersion equipment
- Offshore plants: platforms, cranes
- HVAC louvers, flood control gates, telescopes
- Conveyors, utility vehicles, agricultural and forestry machinery, cranes and hoisting technology – and more
WHY CHOOSE TURCK INCLINOMETERS?

High Accuracy and Repeatability
- ≤ 0.1% repeatable, after a warm-up time of 0.5 hours, ensures consistent outputs.
- Resolution as fine as ≤ 0.05° for Dual Axis analog family.
- Resolution as fine as ≤ 0.04° for CANopen Dual Axis family.
- Temperature compensated down to -40°C (-40°F) and up to +70°C (+158°F) on select versions. Temperature coefficients as low as 0.01°/K for analog models or 0.008°/K for CANopen models.

Rugged, reliable and compact
- Rated to 55 Hz (1 mm) vibration and 30 g (11 ms) shock for a wide variety of applications.
- Q20L60 analog and set point versions measure 20 mm x 30 mm x 60 mm, making them the most compact IP68/IP69K rated inclinometer on the market.
- Q42 CANopen inclinometer housing measures 42 mm x 42.5 mm x 68 mm, and incorporates bus-in and bus-out M12 eurofast® connectors for ease of use.
- IP68 rated according to TURCK’s stringent test protocol:
 - 24 hours continuous storage at +70 °C (+158°F)
 - 24 hours continuous storage at -25 °C (-13°F)
 - 7 days submerged at a depth of 1 meter
 - 10 thermal shock changes from +70 °C to -25 °C (+158°F to -13°F), 1 hour dwell cycle

Expanded line for an array of applications
- Dual axis with analog voltage or current outputs measuring up to -85° to 85°.
- Single axis with analog voltage or current outputs measuring from 1 to 360° of travel.
- 360° Single axis with configurable dual PNP set points.
- Dual axis with CANopen interface that can be used in a wide variety of industrial and mobile applications.
- Factory default measuring ranges.
- Non-standard measuring ranges available upon request. Contact factory for availability and specifications.

Easy to use
- Zero point offset on the Dual Axis Analog inclinometers can be field adjusted by applying a signal to the teach input pin or by using an optional teach pendant.
- Span of the Single Axis Analog inclinometers can be easily scaled by using the teach input pin to set the span in the field.
- Discrete outputs of the Single Axis Digital inclinometer can be independently set by using the teach input pin or by using an optional teach pendant.
- CANopen inclinometers come with CiA DS-301, profile CiA DSP-410 for ease of configuration.
INCLINOMETER TECHNOLOGY

Dual Axis with Analog Output

TURCK’s standard product is a low profile dual axis (X and Y) inclinometer with standard angular ranges of ±10°, ±45°, ±60° and ±85°, with additional ranges optional. Each axis has independent outputs. The 5 VDC version is a ratiometric design and the power is limited to 4.75 to 5.25 VDC. This means that the output is proportional to the supply voltage. The 10-30 VDC supply units are regulated and the output is fixed regardless.

Single Axis 360° with Analog Output

When a larger range is required or only one axis is necessary, the single axis 360° inclinometer has an adjustable measuring range and allows for programming a specified span within the 360°. The teach function is simple and can be done in seconds.

Single Axis 360° with Two Discrete Switchpoints

This version has dual discrete outputs that are programmable as either normally open or normally closed with an adjustable span within the full angular range 0° to 360°.

Dual Axis with CANopen Interface

A standard CANopen interface according to CiA DS-301/CiA DSP-410. All measured values and parameters are accessible via the object directory (OD).

Technical Specifications – Q42:

<table>
<thead>
<tr>
<th>Angular Range</th>
<th>Resolution</th>
<th>Absolute Accuracy</th>
<th>Calibration</th>
<th>Drift</th>
<th>Temperature Range</th>
<th>Load Resistance</th>
<th>Dimensional Drawings</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10°, ±45°, ±60°, ±85°</td>
<td>±0.05°</td>
<td>±0.1°</td>
<td>±0.3°</td>
<td>N/A</td>
<td>N/A</td>
<td>0.008°/K</td>
<td>N/A</td>
<td>2 6</td>
</tr>
<tr>
<td>Current 4-20 mA, 10-30 VDC</td>
<td>Voltage output 0.1-4.9 V, 10-30 VDC</td>
<td>Voltage output 0.1-4.9 V @ 5 VDC</td>
<td>Teachable zero point up to ±15% with teach adapter VB2-SP4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INCLINOMETER TECHNOLOGY

Dual Axis – Analog Output, 4-20 mA

<table>
<thead>
<tr>
<th>Part Number</th>
<th>ID Number</th>
<th>Angular Range</th>
<th>Resolution</th>
<th>Absolute Accuracy</th>
<th>Zero Point Calibration</th>
<th>Temperature Drift</th>
<th>Temperature Coefficient</th>
<th>Lead Resistance</th>
<th>Dimensional Drawing</th>
<th>Wiring Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2N10H-Q20L60-2L2-H1151</td>
<td>M1534012</td>
<td>±10°</td>
<td>< 0.04°</td>
<td>±0.3°</td>
<td>±5°</td>
<td>≤ ±0.05° K</td>
<td>0.01°/K</td>
<td>200 Ω</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B2N45H-Q20L60-2L2-H1151</td>
<td>M1534013</td>
<td>±45°</td>
<td>< 0.1°</td>
<td>±0.5°</td>
<td>±15°</td>
<td>≤ ±0.025° K</td>
<td>0.03°/K</td>
<td>200 Ω</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B2N60H-Q20L60-2L2-H1151</td>
<td>M1534014</td>
<td>±60°</td>
<td>< 0.14°</td>
<td>±0.5°</td>
<td>±15°</td>
<td>≤ ±0.025° K</td>
<td>0.03°/K</td>
<td>200 Ω</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B2N60H-Q20L60-2L2-H1151/S97</td>
<td>M1534046</td>
<td>±60°</td>
<td>< 0.14°</td>
<td>±0.5°</td>
<td>±15°</td>
<td>≤ ±0.025° K</td>
<td>0.03°/K</td>
<td>200 Ω</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B2N85H-Q20L60-2L2-H1151</td>
<td>M1534032</td>
<td>±85°</td>
<td>< 0.14°</td>
<td>±0.5°</td>
<td>±15°</td>
<td>≤ ±0.025° K</td>
<td>0.03°/K</td>
<td>200 Ω</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Dual Axis – Analog Output, 0.1-4.9 V

<table>
<thead>
<tr>
<th>Part Number</th>
<th>ID Number</th>
<th>Angular Range</th>
<th>Resolution</th>
<th>Absolute Accuracy</th>
<th>Zero Point Calibration</th>
<th>Temperature Drift</th>
<th>Temperature Coefficient</th>
<th>Lead Resistance</th>
<th>Dimensional Drawing</th>
<th>Wiring Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2N10H-Q20L60-2LU3-H1151</td>
<td>M1534006</td>
<td>±10°</td>
<td>< 0.04°</td>
<td>±0.3°</td>
<td>±5°</td>
<td>≤ ±0.05° K</td>
<td>0.01°/K</td>
<td>40 kΩ</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>B2N45H-Q20L60-2LU3-H1151</td>
<td>M1534007</td>
<td>±45°</td>
<td>< 0.1°</td>
<td>±0.5°</td>
<td>±15°</td>
<td>≤ ±0.025° K</td>
<td>0.03°/K</td>
<td>40 kΩ</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>B2N45H-Q20L60-2LU3-H1151/S97</td>
<td>M1534039</td>
<td>±45°</td>
<td>< 0.1°</td>
<td>±0.5°</td>
<td>±15°</td>
<td>≤ ±0.025° K</td>
<td>0.03°/K</td>
<td>40 kΩ</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>B2N60H-Q20L60-2LU3-H1151</td>
<td>M1534008</td>
<td>±60°</td>
<td>< 0.14°</td>
<td>±0.5°</td>
<td>±15°</td>
<td>≤ ±0.025° K</td>
<td>0.03°/K</td>
<td>40 kΩ</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>B2N60H-Q20L60-2LU3-S97</td>
<td>M1534060</td>
<td>±60°</td>
<td>< 0.14°</td>
<td>±0.5°</td>
<td>±15°</td>
<td>≤ ±0.025° K</td>
<td>0.03°/K</td>
<td>40 kΩ</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>B2N85H-Q20L60-2LU3-H1151</td>
<td>M1534027</td>
<td>±85°</td>
<td>< 0.14°</td>
<td>±0.5°</td>
<td>±15°</td>
<td>≤ ±0.025° K</td>
<td>0.03°/K</td>
<td>40 kΩ</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>B2N85H-Q20L60-2LU3-S97</td>
<td>M1534040</td>
<td>±85°</td>
<td>< 0.14°</td>
<td>±0.5°</td>
<td>±15°</td>
<td>≤ ±0.025° K</td>
<td>0.03°/K</td>
<td>40 kΩ</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Single Axis 360° – Analog Output, Adjustable Measuring Range 4-20 mA

<table>
<thead>
<tr>
<th>Part Number</th>
<th>ID Number</th>
<th>Angular Range</th>
<th>Resolution</th>
<th>Absolute Accuracy</th>
<th>Zero Point Calibration</th>
<th>Temperature Drift</th>
<th>Temperature Coefficient</th>
<th>Lead Resistance</th>
<th>Dimensional Drawing</th>
<th>Wiring Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2N10H-Q20L60-2L2-H1151</td>
<td>M1534045</td>
<td>360°</td>
<td>< 0.14°</td>
<td>±0.5°</td>
<td>N/A</td>
<td>N/A</td>
<td>0.03°/K</td>
<td>200 Ω</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Single Axis 360° – Analog Output, Adjustable Measuring Range 0.1-4.9 V

<table>
<thead>
<tr>
<th>Part Number</th>
<th>ID Number</th>
<th>Angular Range</th>
<th>Resolution</th>
<th>Absolute Accuracy</th>
<th>Zero Point Calibration</th>
<th>Temperature Drift</th>
<th>Temperature Coefficient</th>
<th>Lead Resistance</th>
<th>Dimensional Drawing</th>
<th>Wiring Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2N1360V-Q20L60-2LU3-H1151</td>
<td>M1534009</td>
<td>360°</td>
<td>< 0.14°</td>
<td>±0.5°</td>
<td>N/A</td>
<td>N/A</td>
<td>0.03°/K</td>
<td>40 Ω</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Single Axis 360° – Digital Output, PNP, N.C./N.O. Programmable, Adjustable Switchpoints

<table>
<thead>
<tr>
<th>Part Number</th>
<th>ID Number</th>
<th>Angular Range</th>
<th>Resolution</th>
<th>Absolute Accuracy</th>
<th>Zero Point Calibration</th>
<th>Temperature Drift</th>
<th>Temperature Coefficient</th>
<th>Lead Resistance</th>
<th>Dimensional Drawing</th>
<th>Wiring Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2N1360V-Q20L60-2UP6X3-H1151</td>
<td>M1534051</td>
<td>360°</td>
<td>< 0.14°</td>
<td>±0.5°</td>
<td>N/A</td>
<td>≤ ±0.03° K</td>
<td>0.03°/K</td>
<td>500 mA</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Dual Axis – Analog Output, CANopen Interface

<table>
<thead>
<tr>
<th>Part Number</th>
<th>ID Number</th>
<th>Angular Range</th>
<th>Resolution</th>
<th>Absolute Accuracy</th>
<th>Zero Point Calibration</th>
<th>Temperature Drift</th>
<th>Temperature Coefficient</th>
<th>Lead Resistance</th>
<th>Dimensional Drawing</th>
<th>Wiring Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2N10H-Q42-CNX2-2HL150</td>
<td>M1534061</td>
<td>±10°</td>
<td>≤ 0.05°</td>
<td>±0.1°</td>
<td>N/A</td>
<td>N/A</td>
<td>0.008°/K</td>
<td>N/A</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>B2N45H-Q42-CNX2-2HL150</td>
<td>M1534062</td>
<td>±45°</td>
<td>≤ 0.1°</td>
<td>±0.1°</td>
<td>N/A</td>
<td>N/A</td>
<td>0.008°/K</td>
<td>N/A</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>B2N60H-Q42-CNX2-2HL150</td>
<td>M1534063</td>
<td>±60°</td>
<td>≤ 0.1°</td>
<td>±0.1°</td>
<td>N/A</td>
<td>N/A</td>
<td>0.008°/K</td>
<td>N/A</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Technical Specifications – Q20L60:

- **Voltage:** 10-30 VDC / Ratiometric: 4.75-5.25 VDC
- **Protection:** IP68
- **Operating Temperature: -30° to +70°C (-22° to +158°F) / 597 Option: -40° to +70°C (-40° to +158°F)
- **Housing:** Polycarbonate
- **Shock Resistance:** 30 g (11 ms)
- **Vibration:** 55 Hz (1 mm)
- **Repeatability:** ≤ 0.2% of measuring range |A-B|
- ≤ 0.1% after warm-up time of 0.5 h

Technical Specifications – Q42:

- **Voltage:** 10-30 VDC
- **Protection:** IP68
- **Operating Temperature:** -40° to +70°C (-40° to +158°F)
- **Housing:** PA12
- **Shock Resistance:** 30 g (11 ms)
- **Vibration:** 55 Hz (1 mm)
- **Max. Linear Deviation:** ±0.2°(10°) / ±0.3°(45°) / ±0.4°(60°)
- **Baud Rate:** 10 kBit/s to 1 MBit/s
- **Interface:** CANopen
WHAT IS AN INCLINOMETER?

Inclinometers measure angular tilt in reference to gravity. TURCK inclinometers contain a MEMS (Micro-Electro-Mechanical System) device that incorporates a microelectromechanical capacitive element into the sensor that utilizes two parallel plate electrodes, one stationary and one attached to a spring-mass system. The suspended electrode is free to move with the change in angle relative to earth's gravity. This results in a measurable change in the capacitance between the two plates that is proportional to the angle of deflection. These signals are conditioned to provide voltage outputs (0.1 to 4.9 VDC) or current outputs (4 to 20 mA).

The microprocessor design and the MEMS technology allows for a compact, precise inclinometer in a very robust, industrialized package. The inclinometer carries an IP68 rating for ingress protection, and can operate in temperatures from -30°C to +70°C (-22°F to +158°F), with the option for -40°C (-40°F). These sensors can be mounted up to a maximum of ±85° angle for dual axis models and 360° for single axis models.

WHERE CAN I USE AN INCLINOMETER?

Inclinometer sensors may be used in a wide variety of applications to solve unique feedback requirements where the customer needs to level platforms or control tilt angle.

The device's small size lends itself to a multitude of applications, such as:

- Commercial machines: diggers, cranes, rotary tables, bulldozers, road construction machinery
- Dancer arm position for web tension control
- Solar plants: mirror and cell positioning
- Machine control: levers, pedals, flaps, mixing machines, hydraulic jacks
- Vertical and horizontal drills used in tunnel and road construction and immersion equipment
- Offshore plants: platforms, cranes
- HVAC louvers, flood control gates, telescopes
- Conveyors, utility vehicles, agricultural and forestry machinery, cranes and hoisting technology – and more

* Length in meters. Standard cable lengths are 2, 5, 10 and 15 meters. Consult factory for other lengths.